Usahatani Jagung di Lahan Sawah Beririgasi

Kasus Daerah Aliran Sungai Brantas

Sumaryanto

Keberhasilan pengembangan jagung hibrida ditentukan oleh jangkauan petani pada teknologi dan kondisi lingkungan agroekosistem.

Sejak Dublin Principle dideklarasikan pada tahun 1992, strategi pembangunan pertanian di berbagai negara maju (terutama Eropa Barat dan Amerika Utara) disesuaikan dengan paradigma baru pengembangan sumber daya air. Bagi Indonesia, implikasi terpenting dari paradigma baru tersebut adalah bahwa dalam rangka mewujudkan ketahanan pangan yang mantap dibutuhkan dua pendekatan sekaligus, yaitu diversifikasi pangan dan peningkatan efisiensi irigasi dalam usahatani padi (Sumaryanto dan Sudaryanto, 2001). Dalam konteks demikian itu, pengembangan agribisnis jagung sangat strategis karena sangat relevan dengan diversifikasi pangan.

Diversifikasi pangan membutuhkan pendekatan simultan dari sisi penawaran dan permintaan. Menyimak adanya korelasi negatif antara konsumsi jagung per kapita dengan tingkat pendapatan (Pakpahan dan Suhartini, 1990; Sudaryanto et al., 2000) maka upaya untuk meningkatkan konsumsi jagung per kapita sebagai sumber karbohidrat membutuhkan waktu panjang dan tidak mudah. Namun, hal ini sangat dibutuhkan untuk menciptakan situasi kondusif bagi pendekatan dari sisi penawaran.


---

1 Perubahan paradigma global dalam pendayagunaan sumber daya air dimulai sejak Dublin Principle dideklarasikan pada bulan Juni 1992. Intinya adalah bahwa pendayagunaan sumber daya air harus selalu berlandaskan prinsip penegakan hak asasi manusia, demokratisasi, keberlanjutan, dan efisiensi secara simultan agar manfaatnya dapat dinikmati oleh semua, baik generasi sekarang maupun generasi mendatang.

2 Pola konsumsi melibatkan kebiasaan makan (food habit) yang dipengaruhi oleh faktor ekstrinsik (lingkungan alam, lingkungan sosial, budaya, ekonomi) dan faktor intrinsik (asosiasi emosional, kesehatan, ataupun penilaian yang lebih terhadap mutu makanan) (Khumaedi, 1982).
Sebenarnya peran penting jagung dalam pengembangan komoditas pertanian di Indonesia telah disadari sejak lama. Cukup banyak penelitian terdahulu yang menyimpulkan atau menyarankan perlunya pengembangan komoditas ini dalam rangka mendukung pengembangan agroindustri (Simatupang, 1988; Sumaryanto dan Rusastra, 1991; Hutabarat et al., 1993), ataupun dalam konteks peningkatan pendapatan melalui pengembangan diversifikasi pertanian (Rachmat dan Pasandaran, 1987). Persoalannya terletak pada kurangnya konsistensi dalam implementasi program pengembangan agribisnis jagung yang terjadi selama ini, yang mungkin juga terkait dengan ekses politik pangan yang terlampau bias ke beras.


Selama ini peningkatan permintaan utama jagung berasal dari industri pakan (Sumaryanto et al., 1990). Seiring dengan kebutuhan protein hewani yang terus meningkat, kebutuhan jagung juga meningkat sehingga pada periode-periode tertentu Indonesia harus mengimpor jagung karena produksi dalam negeri tidak mencukupi.

Secara teoritis, meningkatnya permintaan jagung merupakan hal kondusif untuk mengembangkan komoditas ini. Meningkatnya daya serap pasar diharapkan dapat menciptakan harga jual jagung yang kompetitif sehingga motivasi petani untuk memproduksi komoditas ini semakin tinggi.

Dari sudut pandang agronomi, jagung memiliki daya adaptasi terhadap lingkungan yang luas sehingga kesesuaian lahan dan iklim untuk budi daya tanaman ini berada dalam rentang yang luas pula. Lebih dari itu, teknik budi daya jagung dalam sistem pertanian konvensional tidak memerlukan teknologi yang rumit (lebih mudah dibandingkan dengan usahatani padi atau kedelai), sehingga relatif mudah bagi petani untuk menguasainya.

Bagi petani Indonesia, sawah merupakan sumber daya lahan yang perananinya sangat khusus karena terkait langsung dengan komoditas pangan yang posisinya sangat strategis dalam kehidupan masyarakat. Sawah adalah suatu hamparan lahan yang dikondisikan agar sesuai untuk menanam padi yang pada periode tertentu pertumbuhan optimalnya memerlukan penggenangan (terutama pada masa menjelang pembuatan dan pengisian biji). Oleh karena itu, dilakukan suatu rekayasa (teknis, ekonomi, bahkan budaya) agar pasokan air di hamparan lahan tersebut sesuai dengan kebutuhan pertumbuhan tanaman padi dengan cara membangun dan mengelola sistem irigasi.

Walaupun tujuan utama pengembangan sawah adalah untuk menanam padi, tetapi pemanfaatannya tidak hanya untuk usahatani padi. Jika secara teknis kondisi pasokan air irigasi kurang kondusif untuk menanam padi maka petani menanam palawija dan atau komoditas hortikultura. Lazimnya hal ini dilakukan pada musim kemarau.

Jika luas tanam mencerminkan popularitas suatu komoditas maka di kalangan petani Indonesia, ada empat komoditas palawija yang sangat populer yaitu jagung, kedelai, kacang tanah, dan kacang hijau. Komoditas ini cocok diusahakan di lahan sawah ataupun ladang (tegalan atau lahan kering). Berbeda dengan di lahan sawah, pengusahaan komoditas palawija di ladang umumnya justru dilakukan pada musim hujan.


DAS Brantas mencakup wilayah seluas 11.800 km². DAS ini mencakup seluruh wilayah atau sebagian besar wilayah dari delapan kabupaten (Malang, Blitar, Tulungagung, Kediri, Jombang, Nganjuk, Mojokerto, Sidoarjo) dan enam kota (Malang, Blitar, Kediri, Mojokerto, Sidoarjo, Surabaya). Dari sudut pandang ekonomi regional, kontribusi Pendapatan Domestik Regional Bruto (PDRB) dari seluruh wilayah yang tercakup dalam DAS Brantas terhadap total PDRB Jawa Timur sekitar 65% (JICA, 1998).

Sampai dengan tahun 1998, total luas lahan di DAS Brantas yang diusahakan untuk pertanian mencapai 636.000 hektar. Dari angka itu, sekitar 324.000 hektar berupa lahan sawah dan 316.000 hektar di antaranya memperoleh air irigasi yang sumber pasokannya berasal dari Sungai Brantas dan atau anak-anak sungainya.

Untuk sistem irigasi skala besar, sistem pengelolaan irigasi di DAS Brantas dapat dikatakan paling maju di Indonesia. Pemantauan pasokan air irigasi dan pertanaman di petak-petak tersier menggunakan periode sepuluh harian (di Jatiluhur menggunakan periode dua mingguan). Kondisi tanah yang subur (banyak gunung berapi) serta ketersediaan air yang cukup (dari irigasi

Di sejumlah Cabang Seksi Pengairan di kawasan ini, dalam sistem pemanfaatan pertanaman periode sepuluh harian, terdapat tiga jenis komoditas yakni padi, jagung, dan tebu. Dengan demikian, usahatani jagung merupakan salah satu aktivitas usahatani di lahan sawah yang memperoleh perhatian besar dalam sistem pengelolaan irigasi di wilayah ini.


**Pola Pengusahaan Jagung di Lahan Sawah Beririgasi**

Dalam pengembangan agribisnis jagung, ketersediaan data dan informasi tentang pola tanam sangat dibutuhkan karena berkaitan dengan beberapa hal berikut: (1) merefleksikan fakta yang menyangkut pilihan petani mengenai apa yang (akan) diusahkan, berapa (skala pengusahaan), dan kapan (waktu pengusahaan); (2) merupakan masukan penting dalam membuat prediksi pasokan komoditas pertanian; (3) merupakan umpan balik mengenai tingkat pencapaian sasaran program; dan (4) merupakan salah satu masukan untuk membuat perkiraan tentang pendapatan petani.

Secara teoritis, pola tanam merupakan manifestasi dari pilihan aktivitas usahatani dalam rangka pencapaian tujuan petani dengan kendala sumber daya yang dimiliki. Jadi, dalam hal-hal tertentu, pola tanam juga mencerminkan kendala yang dihadapi petani dalam sistem pengelolaan usahatani. Informasi ini cukup penting dalam konteks pelaksanaan program pengembangan produksi pertanian yang berada dalam jangka pendek maupun jangka panjang.

Pengusahaan tanaman di lahan sawah DAS Brantas cukup intensif (Gambar 1). Luas lahan sawah yang terpaksa tidak ditanami (bera) pada MT I, II, dan III masing-masing hanya 5, 10, dan 29% dari total lahan sawah di kawasan tersebut. Pada MT I, bera terutama terjadi di lahan sawah yang lokasinya terlampau rendah sehingga genangan air terlalu tinggi. Bera pada MT II dan III disebabkan oleh kekurangan air atau karena alasan-alasan yang menyangkut pilihan jenis pekerjaan atau akibat masalah teknis yang terkait dengan alih status penggarapan. Dengan kondisi seperti itu, IP di lahan
persawahan di daerah ini mencapai 2,57. IP yang tinggi itu (di atas rata-rata IP nasional) dapat dicapai oleh petani karena didukung oleh ketersediaan air yang cukup. Secara umum, pasokan air dari irigasi Brantas cukup memadai untuk mendukung IP 2,0. Selanjutnya, dengan pengaturan pola tanam yang baik dan memanfaatkan air tanah sebagai sumber sadapan dalam irigasi pompa (Gambar 2), petani dapat meningkatkan IP sampai 3,0, sehingga secara agregat rata-rata IP dapat mencapai angka di atas 3.5.


Gambar 2. Mengairi tanaman palawija dengan pompa irigasi.

3 Hasil penelitian Direktorat Geologi dan Tata Lingkungan menyimpulkan bahwa potensi air tanah di kawasan ini termasuk paling tinggi di Indonesia. Selenggengan itu maka pengembangan irigasi pompa di kawasan ini termasuk kategori paling intensif.

Latar belakang penerapan pola pengusahaan seperti itu berkaitan dengan ketersediaan air irigasi, harapan tingkat keuntungan dan risiko usahatani, dan jaminan pemasaran. Di DAS Brantas tengah dan hilir, ketersediaan air irigasi cukup untuk menanam padi sehingga pilihan utama adalah mengusahakan padi. Jika air tidak mencukupi untuk padi maka pilihan berikutnya tertuju pada tanaman palawija dan atau komoditas hortikultura dataran rendah.

Di kawasan DAS Brantas, empat jenis komoditas palawija yang tingkat pengusahahannya tinggi adalah jagung, kedelai, kacang hijau, dan kacang tanah. Berbeda dengan tanaman palawija yang lain, pengusahaan jagung tidak hanya populer pada MT III, tetapi juga pada MT II, bahkan ada pula yang mengusahakannya pada MT I.

Jika alternatifnya adalah komoditas jagung dan kedelai maka faktor risi-ko usahatani seringkali lebih diutamakan daripada tingkat keuntungan usahatani. Umumnya, petani kedelai memiliki pengalaman cukup panjang dalam budi daya kedelai sehingga mereka merasa yakin dapat meminimalkan risiko kegagalan panen.

Jaminan pemasaran komoditas palawija di kawasan DAS Brantas sangat baik karena ditunjang oleh sarana dan prasarana yang memadai. Jalan raya bersaibat telah menjangkau lebih dari 80% pedesaan beragroekosistem sawah di kawasan ini. Selain dukungan sarana dan prasarana yang baik, di kawasan ini (Surabaya, Sidoarjo, Kediri) juga banyak terdapat industri pengolahan jagung, baik untuk pakan ternak atau ikan maupun untuk industri makanan dan minuman sehingga daya serap pasar jagung cukup tinggi.

Sebaran spasial dan temporal pengusahaan jagung di lahan sawah DAS Brantas beserta implikasinya adalah sebagai berikut (Gambar 4):

- Proporsi areal tanam jagung terluas adalah di DAS Brantas tengah (Nganjuk, Kediri, Jombang), sedangkan yang terendah adalah di DAS hilir (Sidoarjo, Mojokerto, Surabaya).
- Pangsa luas areal tanam jagung pada MT I, II, dan III masing-masing adalah 3,5%, 11,3%, dan 26,6% dari total luas areal persawahan di kawasan tersebut. Jadi, secara umum pasokan jagung terbesar terjadi pada MT III, sedangkan yang terkecil pada MT I.

Dengan memperhitungkan luas baku di masing-masing Sub-DAS dan perbedaan produktivitas antarmuslim yang tidak terlampaui tinggi, maka distribusi spasial dan temporal sumber pasokan jagung adalah: (1) pada MT I, pasokan utama jagung adalah di DAS hulu (Malang, Blitar, Tulungagung) dan (2) pada MT II dan MT III, pasokan utama adalah di DAS tengah (Kediri, Nganjuk, Jombang).

Waktu tanam jagung pada MT I adalah antara akhir November—awal Januari (tidak serentak); MT II antara April—Mei akhir, dan MT III antara Juni—akhir Juli. Lebih dari 80% petani mengusahakan jagung secara monokultur. Pengertian monokultur dalam konteks ini tidak berarti bahwa di lahan petani hanya dijumpai tanaman jagung tetapi sebagian petani juga menanam kacang panjang, ubi kayu atau terung sebagai tanaman sampingan untuk memenuhi kebutuhan keluarga. Apabila petani menerapkan sistem campuran maka pola tanam yang umum adalah jagung+kacang tanah atau jagung+kacang tanah+kacang panjang.


Untuk memperoleh gambaran lebih lengkap mengenai tingkat partisipasi dan luas pengusahaan tanaman jagung maka dilakukan pembandingan dengan tingkat partisipasi dan pengusahaan komoditas pertanian secara keseluruhan di lahan sawah pada kawasan tersebut (Tabel 1). Beberapa ke- simpulan yang dapat ditarik adalah sebagai berikut:

- Sebagian besar petani yang mengusahakan tanaman jagung pada MT I memiliki lahan garapan yang luas, karena:
  - Di areal persawahan di DAS Brantas ataupun di Jawa pada umumnya, lahan garapan yang luas terdiri atas banyak persil. Pengusahaan tanaman jagung pada MT I dilakukan di persil-persil sawah yang lokasinya relatif jauh dari rumah atau di persil-persil sawah yang letaknya "agak tinggi" sehingga secara teknis terhindar dari ancaman kelebihan air (tergenang). Oleh karena itu, petani yang memiliki lahan garapan relatif kecil, tingkat partisipasinya dalam usahatani jagung pada MT I juga rendah (kurang dari 2%).
  - Petani yang memiliki lahan garapan luas umumnya lebih mampu memanfaatkan momentum untuk memperoleh harga jual tinggi akibat kelebihan permintaan. Secara teoritis, peluang terbesar terjadi pada MT I karena pada musim itu sebagian besar petani cenderung menanam padi.

<table>
<thead>
<tr>
<th>Wilayah</th>
<th>Musim tanam</th>
<th>Jagung</th>
<th>Seluruh komoditas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>% petani</td>
<td>luas (ha)</td>
</tr>
<tr>
<td>DAS Brantas hulu</td>
<td>I</td>
<td>4,2</td>
<td>0,993</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>4,2</td>
<td>0,973</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>24,2</td>
<td>0,191</td>
</tr>
<tr>
<td>DAS Brantas hengah</td>
<td>I</td>
<td>1,0</td>
<td>0,420</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>21,5</td>
<td>0,347</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>59,0</td>
<td>0,317</td>
</tr>
<tr>
<td>DAS Brantas hilir</td>
<td>I</td>
<td>1,2</td>
<td>0,268</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>1,3</td>
<td>0,240</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>9,4</td>
<td>0,328</td>
</tr>
<tr>
<td>DAS Brantas</td>
<td>I</td>
<td>1,8</td>
<td>0,705</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>10,2</td>
<td>0,405</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>33,1</td>
<td>0,295</td>
</tr>
</tbody>
</table>

1Rata-rata luas garapan dari petani yang berpartisipasi.


- Secara umum tingkat partisipasi maupun rata-rata luas pengusahaan tertinggi adalah di wilayah Sub-DAS tengah, diikuti oleh Sub-DAS hulu. Pada MT II, tingkat partisipasi usahatani jagung di lahan sawah beririgasi di hulu memang kurang dari 5%, tetapi pada MT III mencapai 24%. Kondisi ini berbeda dengan di Sub-DAS tengah di mana tingkat partisipasinya pada MT II dan MT III masing-masing sekitar 22% dan 59%. Pada musim tersebut, petani yang tidak mengusahakan jagung umumnya menanam kedelai, padi, atau tanaman hortikultura. Tingkat partisipasi pengusahaan jagung di kawasan Sub-DAS hilir pada MT II dan MT III hanya 1% dan 9%, jauh lebih kecil dari pada di kawasan hulu dan tengah. Petani yang tidak menanam jagung umumnya mengusahakan tanaman hortikultura atau tebu, seperti banyak dijumpai di Sidoarjo dan Mojokerto.

- Terdapat indikasi kuat bahwa sepanjang kelayakan teknis mendukung (kondisi lahan lebih sesuai untuk palawija daripada padi) maka sebagian besar petani yang tertarik mengusahakan tanaman jagung cenderung memanfaatkan seluruh lahan yang dimiliki untuk tanaman jagung. Mereka umumnya menerapkan pola tanam monokultur. Di areal persawahan di Kediri,
Nganjuk, dan Jombang, pada MT III dijumpai hamparan tanaman jagung yang luas yang dimiliki oleh ratusan petani. Fenomena seperti ini kondusif untuk mewujudkan sistem agribisnis yang efisien karena terciptanya konsolidasi lahan usahatani memungkinkan terjadinya sistem pemasaran yang lebih efisien.

**PENGUNGAAN MASUKAN, PRODUKTIVITAS, DAN KAPABILITAS MANAJERIAL**


Secara umum penggunaan masukan pada usahatani jagung pada musim kemarau (MT II maupun MT III) relatif lebih intensif daripada musim hujan. Penggunaan pupuk SP-36 dan KCl pada musim kemarau hampir dua kali lipat daripada musim hujan.

Penggunaan urea dan ZA termasuk tinggi, lebih dari 300 kg per hektar. Angka ini lebih rendah daripada penggunaan pupuk sejenis pada usahatani padi yang mencapai lebih dari 400 kg per hektar, tetapi pada umumnya lebih tinggi dibandingkan dengan penggunaan pupuk pada usahatani jagung di lahan kering kawasan ini. Cukup banyak pula petani yang memanfaatkan pupuk kandang dan pupuk daun. Dalam konteks ini, variabilitas antarpetani cukup tinggi.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MT I</td>
<td>MT II</td>
<td>MT III</td>
<td>Rata-rata</td>
</tr>
<tr>
<td>Hasil (t)</td>
<td>4,41</td>
<td>5,38</td>
<td>5,22</td>
<td>5,21</td>
</tr>
<tr>
<td>Benih (kg)</td>
<td>23,85</td>
<td>24,21</td>
<td>25,15</td>
<td>24,72</td>
</tr>
<tr>
<td>Urea, ZA (kg)</td>
<td>325,96</td>
<td>363,00</td>
<td>320,95</td>
<td>330,75</td>
</tr>
<tr>
<td>SP-36 (kg)</td>
<td>37,90</td>
<td>68,00</td>
<td>61,38</td>
<td>61,93</td>
</tr>
<tr>
<td>KCl (kg)</td>
<td>8,96</td>
<td>16,20</td>
<td>18,87</td>
<td>17,85</td>
</tr>
<tr>
<td>Pupuk lainnya (Rp000)</td>
<td>47,15</td>
<td>80,49</td>
<td>63,63</td>
<td>66,80</td>
</tr>
<tr>
<td>Insektisida, fungisida (Rp000)</td>
<td>22,91</td>
<td>23,63</td>
<td>32,31</td>
<td>29,94</td>
</tr>
<tr>
<td>Irigasi (pompa) (Rp000)</td>
<td>-</td>
<td>16,46</td>
<td>47,47</td>
<td>38,44</td>
</tr>
<tr>
<td>Masukan lain-lain (Rp000)</td>
<td>26,71</td>
<td>5,50</td>
<td>21,87</td>
<td>18,33</td>
</tr>
<tr>
<td>Jam kerja</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pria</td>
<td>616,94</td>
<td>686,87</td>
<td>697,19</td>
<td>691,54</td>
</tr>
<tr>
<td>Wanita</td>
<td>321,44</td>
<td>427,34</td>
<td>376,91</td>
<td>386,14</td>
</tr>
<tr>
<td>Anak-anak</td>
<td>-</td>
<td>2,29</td>
<td>2,04</td>
<td>2,01</td>
</tr>
<tr>
<td>Ternak</td>
<td>-</td>
<td>6,40</td>
<td>1,64</td>
<td>2,66</td>
</tr>
<tr>
<td>Mesin (traktor)</td>
<td>7,62</td>
<td>17,92</td>
<td>13,91</td>
<td>15,87</td>
</tr>
</tbody>
</table>

*Sumaryanto: Usahatani Jagung di Lahan Sawah Beririgasi*
Rata-rata penggunaan tenaga kerja pria, wanita, ternak dan mesin (traktor) masing-masing adalah 700, 386, 3, dan 16 jam per hektar per musim. Kegiatan yang paling banyak membutuhkan tenaga kerja adalah pengolahan tanah, tanam, penyianan, dan panen. Tenaga kerja pria terutama digunakan dalam kegiatan pengolahan tanah dan panen, sedangkan tenaga kerja wanita dalam kegiatan tanam, penyianan, dan panen.

Tenaga kerja ternak (bajak dengan kerbau atau sapi) dan traktor terutama digunakan dalam pengolahan tanah. Penggunaan traktor tangan (hand tractor) lebih populer daripada tenaga kerja ternak karena: (1) populasi ternak kerja semakin sedikit sehingga bagi petani jauh lebih mudah mencari penyedia jasa traktor daripada jasa pengolahan tanah dengan ternak, (2) pengolahan tanah dengan traktor lebih cepat, (3) seringkali total pengeluaran setiap hektar untuk pengolahan tanah dengan traktor lebih rendah daripada dengan ternak.

Pada usahatani jagung musim kemarau, petani perlu menambah air irigasi. Umumnya petani memperolehnya dari irigasi pompa milik sendiri atau dari penyedia jasa irigasi pompa. Frekuensi pemberian air dari irigasi pompa bervariasi tergantung pada tingkat kekeringan dan masa pertumbuhan tanaman. Pada MT II, irigasi cukup sekali dilakukan, tetapi pada MT III pengairan bisa dilakukan sampai enam kali. Umumnya, irigasi pompa memanfaatkan air tanah di lahan petani yang bersangkutan, atau air dari saluran irigasi atau dari sungai. Debit sumur bervariasi antarlokasi, demikian pula dengan kedalaman sumur (5-30 m). Teknik mengairi tanaman jagung yang sering ditempuh ada dua cara: (1) dengan mengalirkan langsung air ke hamparan sampai seluruh lahan basah (bila hamparan lahan tidak dibuat guludan), atau (2) mengalirkan air ke parit-parit di antara guludan, dan menggenangkannya beberapa saat sam-pai guludan basah. Lama pemberian air dari irigasi pompa bervariasi tergantung pada tingkat kekurangan air, masa pertumbuhan tanaman, dan debit (discharge) pompa irigasi.

Penggunaan masukan yang paling intensif adalah di wilayah persawahan Sub-DAS Brantas tengah, yang tampak dari penggunaan pupuk dan tenaga kerja (Tabel 3). Rata-rata tingkat penggunaan benih jagung di Sub-DAS Brantas tengah dan hulu jauh lebih rendah daripada di Sub-DAS hilir, karena petani menggunakan benih hibrida. Namun, jika penggunaan benih sangat rendah (kurang dari 18 kg per hektar) maka ada beberapa kemungkinan yang terjadi:

- Petani menerapkan pola tumpang sari sedemikian rupa sehingga luas tanam masing-masing jenis komoditas yang ditumpangsarikan sulit ditentukan secara eksplisit. Dalam hal ini tingkat penggunaan benih bias ke bawah (under-estimate).
- Petani menerapkan jarak tanam lebih longgar daripada yang umum diterap-kan di lokasi tersebut sehingga populasi tanaman per hektar lebih sedikit.
- Kombinasi dari keduanya.

<table>
<thead>
<tr>
<th>Variabel</th>
<th>Sub-DAS hulu</th>
<th>Sub-DAS tengah</th>
<th>Sub-DAS hilir</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MT I</td>
<td>MT II</td>
<td>MT III</td>
</tr>
<tr>
<td>Hasil (t)</td>
<td>4,47</td>
<td>4,67</td>
<td>4,50</td>
</tr>
<tr>
<td>Benih (kg)</td>
<td>27,2</td>
<td>28,3</td>
<td>29,1</td>
</tr>
<tr>
<td>Urea, ZA (kg)</td>
<td>361,1</td>
<td>300,9</td>
<td>177,9</td>
</tr>
<tr>
<td>SP36 (kg)</td>
<td>26,9</td>
<td>48,9</td>
<td>19,4</td>
</tr>
<tr>
<td>KCl (kg)</td>
<td>16,1</td>
<td>16,1</td>
<td>8,7</td>
</tr>
<tr>
<td>Pupuk lainnya (Rp000)</td>
<td>10,8</td>
<td>10,8</td>
<td>4,6</td>
</tr>
<tr>
<td>Insektisida, fungisida (Rp000)</td>
<td>41,2</td>
<td>21,5</td>
<td>16,3</td>
</tr>
<tr>
<td>Irigasi (Rp000)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Masukan lain-lain (Rp000)</td>
<td>48,1</td>
<td>55,0</td>
<td>68,6</td>
</tr>
<tr>
<td>Jam kerja</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pria</td>
<td>595,9</td>
<td>916,5</td>
<td>624,3</td>
</tr>
<tr>
<td>Wanita</td>
<td>258,5</td>
<td>403,5</td>
<td>394,2</td>
</tr>
<tr>
<td>Anak-anak</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ternak</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mesin (traktor)</td>
<td>4,5</td>
<td>14,8</td>
<td>15,0</td>
</tr>
</tbody>
</table>

Dengan tingkat penggunaan masukan yang lebih intensif maka produktivitas usahatan jagung di Sub-DAS Brantas tengah memang lebih tinggi daripada produktivitas di dua Sub-DAS lainnya, terutama pada MT II dan MT III.

Untuk mengetahui tingkat kesesuaian penggunaan masukan yang di-praktekkan oleh petani, dilakukan pendugaan respons produktivitas terhadap tingkat penggunaan masukan setiap hektar. Hasil estimasi dengan metode Ordinary Least Square (OLS) menunjukkan:

\[
y = 39,232 - 0.049x_1 + 0.007x_2 + 0.012x_3 + 0.046x_4 + 0.012x_5 + 0.002x_6 - 0.006x_7
\]

\[
(0.137) (0.005) (0.012) (0.021) (0.005) (0.014) (0.008)
\]

\[
- 0.007x_8 + 0.005x_9 + 0.012x_10 - 0.059x_11 + 0.120x_12 + 0.333x_13 + 3.649D
\]

\[
(0.017) (0.002) (0.004) (0.090) (0.078) (0.072) (2.270)
\]

\[
R^2 = 0.3119
\]

Angka dalam kurung : *standard error* koefisien yang bersangkutan
Angka dicetak tebal miring : nyata pada \( \alpha = 0.01 \)
Observasi \( (n) \) : 219

Semua peubah (\( y \) dan \( x \)) adalah dalam bentuk *natural log* (ln), dengan:

\[
y = \text{produktivitas usahatan jagung (kuintal/ha)}
\]

\[
x_1 = \text{benih (kg/ha)}
\]

\[
x_2 = \text{urea, ZA (kg/ha)}
\]

\[
x_3 = \text{TSP, SP-36 (kg/ha)}
\]

\[
x_4 = \text{KCI (kg/ha)}
\]

\[
x_5 = \text{pupuk lainnya (Rp000/ha)}
\]

\[
x_6 = \text{pestisida (Rp000/ha)}
\]

*Sumaryanto: Usahatan Jagung di Lahan Sawah Beririgasi*
\[ x_7 = \text{irigasi (Rp000/ha)} \]
\[ x_8 = \text{masukan lain (Rp000)} \]
\[ x_9 = \text{tenaga kerja pria (jamkerja/ha)} \]
\[ x_{10} = \text{tenaga kerja wanita (jamkerja/ha)} \]
\[ x_{11} = \text{tenaga kerja anak-anak (jamkerja/ha)} \]
\[ x_{12} = \text{tenaga kerja ternak (jamkerja/ha)} \]
\[ x_{13} = \text{tenaga kerja mesin (jamkerja/ha)} \]
\[ D = \text{peubah dummy musim (MT II = 0, MT III = 1)} \]

Hasil estimasi memperlihatkan bahwa 31\% variasi produktivitas usahatani jagung dapat diterangkan oleh variasi peubah penjelas yang tercakup dalam model. Angka ini cukup baik mengingat unit dari semua variabel adalah per satuan luas lahan garapan. Dari hasil estimasi ini dapat disimpulkan bahwa peningkatan takaran pemupukan urea dan SP-36, meskipun masih menunjukkan angka positif, tetapi tidak nyata. Berbeda dengan itu, respons produktivitas terhadap peningkatan takaran pemupukan KCl dan pupuk lain masih nyata. Peubah lain yang berpengaruh nyata adalah tenaga kerja pria (negatif), tenaga kerja wanita (positif), dan tenaga kerja mesin (positif). Dengan demikian dapat disimpulkan bahwa produktivitas usahatani jagung di lahan sawah DAS Brantas dapat ditingkatkan dengan menambah takaran pemupukan KCl dan pupuk lain, serta mengurangi penggunaan tenaga kerja pria dan mensubstitusinya dengan tenaga kerja wanita dan mesin.


Hasil estimasi SFPF menunjukkan bahwa rata-rata TE yang dicapai oleh petani jagung di lahan sawah DAS Brantas termasuk kategori cukup tinggi yang terlihat dari rata-rata TE yang mencapai 0,756. Bahkan 20,5\% petani mampu mencapai TE lebih dari 0,9. Sebaliknya, petani yang TE-nya kurang dari 0,5 hanya 5,5\%. Sebaran petani menurut TE yang dicapai disajikan pada Gambar 5.

Fenomena lain yang penting disimak adalah bahwa TE ternyata tidak berkorelasi dengan luas garapan \((r = -0,0107)\). Dengan kata lain, kapabilitas manajerial petani tidak berkaitan dengan luas lahan garapan usahatani. Kapabilitas manajerial yang tinggi bukan hanya dimiliki oleh petani dengan lahan garapan luas, atau sebaliknya oleh petani yang menguasai lahan garapan sempit, tetapi oleh semua petani di kawasan tersebut. Hal ini mengindikasikan bahwa adopsi teknologi budi daya jagung di kawasan tersebut telah merata ke semua lapisan petani. Kapabilitas petani dalam mengumpulkan, memilah, dan

Ekonomi Jagung Indonesia 113
mengolah informasi yang dibutuhkan dalam pengambilan keputusan untuk mengelola usahatani telah menyebabkan baik di kalangan petani.


Kapabilitas manajerial menyangkut kemampuan mengelola informasi dalam aspek teknis maupun ekonomi. Aspek teknis bukan hanya mencakup teknik budi daya yang lebih produktif, tetapi juga penanganan pascapanen yang lebih baik. Dalam aspek ekonomi, penentuan pilihan mengenai waktu (kapan) pengusahaan, luas pengusahaan (berapa), tempat pengusahaan dan penjualan (di mana), dan pola tanam yang digunakan perlu dikuasai. Yang pasti, karena sumber daya makin langka maka peluang meraih keuntungan usahatani yang lebih baik dapat terwujud jika efisiensi terus diperbaiki; dan ini membutuhkan kapabilitas manajerial yang lebih baik.


114 Sumaryanto: Usahatani Jagung di Lahan Sawah Beririgasi
PENDAPATAN USAHATANI


Kebanyakan petani menjual jagung kepada pedagang pengumpul. Sebagian dari pedagang pengumpul menyediakan pula jasa pemipil dengan mesin pemipil bermotor. Umumnya, pedagang mendatangi petani dan hanya sebagian kecil petani yang menjual hasil panennya ke pasar umum.


Selain harga jual jagung, pendapatan usahatani juga ditentukan oleh harga masukan, struktur penggunaan masukan, serta produktivitas usahatani. Tidak semua masukan yang dibutuhkan dalam usahatani harus diperoleh dari pasar karena sebagian di antaranya dapat disediakan sendiri oleh petani. Lazimnya petani (terutama petani kecil) berusaha memanfaatkan faktor produksi milik sendiri semaksimal mungkin, terutama tenaga kerja dalam keluarga dengan harapan dapat memperoleh pendapatan tunai yang lebih besar. Keputusan seperti itu dipilih apabila kesempatan untuk bekerja di kegiatan lain kurang menguntungkan atau tidak tersedia.

Seorang petani yang memiliki/menguasai lahan garapan, ada pula yang berburuh kepada petani lain. Bagi petani kecil, kegiatan berburuh tani juga merupakan salah satu sumber pendapatan rumah tangga yang penting.

Kegiatan pertanian bersifat khas, yakni ada semacam pembagian kerja menurut jenis pekerjaan dan jenis kelamin. Pada prinsipnya semua jenis kegiatan usahatani dapat dilakukan oleh pria maupun wanita walaupun tenaga kerja andalan dalam pengolahan tanah dan penyempotan hama/penyakit tanaman adalah tenaga kerja pria. Sementara itu untuk penanaman, penyiangan, dan panen sebagian besar dilakukan oleh wanita meskipun tenaga kerja pria juga terlibat. Untuk pengolahan tanah, penggunaan tenaga kerja mesin (tractor) lebih populer daripada tenaga kerja manusia dan atau ternak.

---

Di daerah persawahan DAS Brantas, sistem upah harian masih banyak diterapkan meskipun semakin kurang populer dibandingkan dengan sistem borongan. Upah tenaga kerja pria berkisar antara Rp10.000-Rp12.500 per hari kerja, belum termasuk nilai makanan, minuman, dan rokok. Dengan harga barang-barang konsumsi setempat, total upah adalah Rp12.500-Rp15.000 per HOK (hari orang kerja) dengan jam kerja 7-8 jam per hari. Untuk tenaga kerja wanita, total upah per HOK berkisar antara Rp7.500-Rp10.000 dengan lama kerja sekitar 5 jam.

Nilai sewa traktor berkisar antara Rp250.000-Rp300.000 per hektar. Nilai sewa ini lebih rendah daripada sewa traktor dalam pengolahan tanah untuk usahatani padi yang mencapai Rp325.000-Rp350.000 per hektar.


Harga insektisida dan fungisida sangat bervariasi tergantung jenis dan merek dagang. Harga-harga pestisida cair seperti Matador per liter berkisar antara Rp120.000-Rp140.000, Buldog Rp120.000-Rp135.000, Decis Rp140.000-Rp160.000, dan Reagen cair Rp35.000-Rp40.000. Harga Furadan dan Reagen padat per kg masing-masing Rp7.000-Rp8.000 dan Rp14.000-Rp16.000, sedangkan Ridomil Rp160.000-Rp175.000.

Dengan struktur penggunaan masukan dan produktivitas seperti tertera pada Tabel 2, pendapatan tunai usahatani jagung di lahan persawahan DAS Brantas disajikan pada Tabel 4. Rata-rata pendapatan tunai adalah Rp2,1 juta per hektar per musim dan bervariasi antarmusim. Pendapatan per hektar per musim tertinggi diperoleh pada MT II yaitu Rp2,2 juta dan terendah pada MT I sekitar Rp1,8 juta. Pendapatan ini relatif sebanding dengan pendapatan usahatani padi di kawasan ini (Tabel Lampiran 1) sebagaimana dilaporkan Sumaryanto et al (2001). Jika diasumsikan rata-rata pengusahaan lahan garapan adalah 0,3 ha (Tabel 1) maka pendapatan tunai petani jagung di kawasan ini adalah sekitar Rp700.000 per musim, setara dengan Rp200.000 per bulan karena masa pengusahaan tanaman jagung sekitar 3,5 bulan.

Rata-rata penerimaan adalah Rp4,4 juta per hektar dan bervariasi antarmusim. Penerimaan tertinggi diperoleh pada MT II karena produktivitas lebih tinggi dari musim lainnya. Rata-rata biaya tunai mencapai Rp2,3 juta per hektar. Rata-rata pangsa biaya tunai total terhadap total penerimaan adalah 52% (R/C 1,9). Biaya tertinggi dibutuhkan untuk upah tenaga kerja yang mencapai Rp1,4-Rp1,6 juta per hektar (65% dari total biaya tunai), disusul oleh biaya untuk sarana produksi Rp630.000 (27%).

5) Jika petani adalah penyewa (umumnya produktivitas usahatani petani penyewa sedikit lebih tinggi daripada petani pemilik), maka pendapatan tunai adalah sekitar Rp1 juta/ha/musim, karena nilai sewa lahan di wilayah ini berkisar antara Rp3-Rp4,8 juta per hektar per tahun.

116 Sumaryanto: Usahatani Jagung di Lahan Sawah Beririgasi
<table>
<thead>
<tr>
<th>Variabel</th>
<th>MT I</th>
<th>MT II</th>
<th>MT III</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rp000 %</td>
<td>Rp000 %</td>
<td>Rp000 %</td>
<td>Rp000 %</td>
</tr>
<tr>
<td>Penerimaan</td>
<td>4023,0</td>
<td>100,0</td>
<td>4519,2</td>
<td>100,0</td>
</tr>
<tr>
<td>Benih</td>
<td>52,9</td>
<td>1,3</td>
<td>54,8</td>
<td>1,2</td>
</tr>
<tr>
<td>Urea, ZA</td>
<td>347,1</td>
<td>8,6</td>
<td>386,6</td>
<td>8,6</td>
</tr>
<tr>
<td>SP-36</td>
<td>58,0</td>
<td>1,4</td>
<td>104,0</td>
<td>2,3</td>
</tr>
<tr>
<td>KCl</td>
<td>15,5</td>
<td>0,4</td>
<td>28,0</td>
<td>0,6</td>
</tr>
<tr>
<td>Pupuk lainnya</td>
<td>47,2</td>
<td>1,2</td>
<td>80,5</td>
<td>1,8</td>
</tr>
<tr>
<td>Insektisida, fungsida</td>
<td>22,9</td>
<td>0,6</td>
<td>23,6</td>
<td>0,5</td>
</tr>
<tr>
<td>Irrigasi (pompa)</td>
<td>0,0</td>
<td>0,0</td>
<td>16,5</td>
<td>0,4</td>
</tr>
<tr>
<td>Masukan lain-lain</td>
<td>26,7</td>
<td>0,7</td>
<td>5,5</td>
<td>0,1</td>
</tr>
<tr>
<td>Tenaga kerja luar keluarga</td>
<td>pria</td>
<td>1041,1</td>
<td>25,9</td>
<td>837,1</td>
</tr>
<tr>
<td></td>
<td>wanita</td>
<td>482,2</td>
<td>12,0</td>
<td>534,2</td>
</tr>
<tr>
<td></td>
<td>anak-anak</td>
<td>0,0</td>
<td>0,0</td>
<td>0,6</td>
</tr>
<tr>
<td></td>
<td>ternak</td>
<td>0,0</td>
<td>0,0</td>
<td>30,4</td>
</tr>
<tr>
<td></td>
<td>mesin (traktor)</td>
<td>101,7</td>
<td>2,5</td>
<td>233,0</td>
</tr>
<tr>
<td>Total biaya</td>
<td>2195,2</td>
<td>54,6</td>
<td>2334,8</td>
<td>51,7</td>
</tr>
<tr>
<td>Pendapatan atas biaya tunai</td>
<td>1827,8</td>
<td>45,4</td>
<td>2184,4</td>
<td>48,3</td>
</tr>
<tr>
<td>Rasio penerimaan/biaya</td>
<td>1,83</td>
<td>1,94</td>
<td>1,97</td>
<td>1,91</td>
</tr>
</tbody>
</table>

Pendapatan usahatani tertinggi dinikmati oleh petani di Sub-DAS Brantas tengah (Gambar 6; Tabel), karena produktivitas lebih tinggi daripada kedua Sub-DAS lainnya. Pada MT II, dengan produktivitas 5,5 ton per hektar, pendapatan mencapai Rp2,3 juta per hektar. Pendapatan terendah diperoleh pada MT II di Sub-DAS hilir.

Hasil analisis pendapatan usahatani tersebut tidak membedakan pendapatan menurut varietas atau kelompok varietas. Jika dipilih menjadi dua kelompok yakni usahatani jagung hibrida dan nonhibrida, hasil analisis adalah sebagai berikut. Produktivitas petani jagung hibrida mencapai 6,05 ton per hektar, sedangkan nonhibrida hanya 4,8 ton. Produktivitas petani jagung hibrida relatif lebih stabil, yang tercermin dari perbedaan produktivitas antarmusim yang lebih rendah. Namun, benih hibrida juga jauh lebih mahal serta membutuhkan masukan lain banyak, sehingga secara total biaya produksi petani hibrida 15-20% lebih tinggi daripada petani nonhibrida. Akibatnya perbedaan pendapatan tidak berbanding lurus dengan perbedaan produktivitas, meskipun secara umum keuntungan yang dinikmati petani jagung hibrida masih lebih besar (Gambar 7).

Pendapatan usahatani yang diperoleh petani tidak hanya berasal dari hasil penjualan jagung pipil dan kering. Jika petani juga memelihara ternak ruminansia (sapi, kerbau, atau kambing), maka daun jagung bagian bawah yang diperoleh ketika menyiapkan tanaman dapat dimanfaatkan sebagai pakan, yang berarti mengurangi curahan waktu kerja untuk mencari pakan. Selain itu, sebagian petani, terutama petani kecil, juga menanam cabai, terung, ubi jalar,
Gambar 6. Perbandingan produktivitas serta pendapatan usahatani jagung per musim tanam antar Sub-DAS di DAS Brantas.

Gambar 7. Produktivitas dan keuntungan usahatani jagung hibrida vs nonhibrida di daerah persawahan DAS Brantas.

KESIMPULAN DAN IMPLIKASI KEBIJAKAN


Penerapan teknologi dalam usahatani jagung di DAS Brantas tergolong maju. Penggunaan benih jagung hibrida telah meluas dan penggunaan sarana produksi cukup intensif. Secara umum kapabilitas manajerial petani di kawasan tersebut dalam usahatani cukup tinggi dan sebarannya merata di semua lapisan petani. Ini tercermin dari rata-rata tingkat efisiensi teknis yang mencapai 0,76 dengan simpangan baku 0,15. Dengan kondisi seperti itu, rata-rata produktivitas usahatani jagung per hektar mencapai 5,2 ton dengan variasi musiman berkisar antara 4,4-5,5 ton.

Sebagian besar petani menjual jagung dalam bentuk pipilan kering. Harga jual berkisar antara Rp820-Rp900 per kg. Rata-rata pendapatan atas biaya tunai adalah Rp2,1 juta per hektar.

Terkait dengan spektrum pilihan komoditas yang dapat diusahakan, tingginya partisipasi petani dalam usahatani di lahan persawahan mempunyai implikasi yang strategis. Di satu sisi, hal itu merupakan indikasi bahwa usahatani jagung di lahan persawahan berprospek cerah. Di sisi lain, apabila dikaftikan dengan program peningkatan produksi padi, hal tersebut merupakan indikasi bahwa ketersediaan lahan sawah untuk memproduksi padi semakin kurang menggembirakan. Dalam konteks ini, opsi kebijakan harus tetap berpijak pada prinsip bahwa sasaran utama adalah peningkatan pendapatan petani. Dengan demikian upaya peningkatan produksi padi tidak harus memunculkan ekses negatif terhadap peningkatan produksi jagung. Sepanjang distorsi harga semakin dikuatangkan, komposisi produksi pertanian yang terbaik pada akhirnya akan diatur secara efisien oleh pasar, dan diharapkan hal itu merupakan jalan keluar terbaik.

DAFTAR PUSTAKA


<table>
<thead>
<tr>
<th>Variabel</th>
<th>MT I</th>
<th>MT II</th>
<th>MT III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rp000</td>
<td>%</td>
<td>Rp000</td>
</tr>
<tr>
<td>Total penerimaan</td>
<td>5209,0</td>
<td>100,0</td>
<td>4822,7</td>
</tr>
<tr>
<td>Total biaya</td>
<td>2943,8</td>
<td>56,5</td>
<td>2691,3</td>
</tr>
<tr>
<td>Benih</td>
<td>142,9</td>
<td>2,7</td>
<td>106,7</td>
</tr>
<tr>
<td>Pupuk</td>
<td>724,9</td>
<td>13,9</td>
<td>639,9</td>
</tr>
<tr>
<td>Pestisida</td>
<td>115,6</td>
<td>2,2</td>
<td>201,9</td>
</tr>
<tr>
<td>Biaya variabel untuk peralatan dan bahan</td>
<td>6,7</td>
<td>0,1</td>
<td>41,8</td>
</tr>
<tr>
<td>Tenaga kerja luar keluarga</td>
<td>1485,9</td>
<td>28,5</td>
<td>1418,4</td>
</tr>
<tr>
<td>Biaya irigasi selain irigasi pompa</td>
<td>30,7</td>
<td>0,6</td>
<td>52,7</td>
</tr>
<tr>
<td>Biaya untuk irigasi pompa</td>
<td>3,1</td>
<td>0,1</td>
<td>31,9</td>
</tr>
<tr>
<td>Pajak dan pungutan lain</td>
<td>34,0</td>
<td>0,7</td>
<td>24,3</td>
</tr>
<tr>
<td>Biaya lainnya</td>
<td>400,1</td>
<td>7,7</td>
<td>171,7</td>
</tr>
<tr>
<td>Pendapatan bersih atas biaya tunai</td>
<td>2265,2</td>
<td>43,5</td>
<td>2131,4</td>
</tr>
</tbody>
</table>


<table>
<thead>
<tr>
<th></th>
<th>MT I</th>
<th>MT II</th>
<th>MT III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rp000</td>
<td>%</td>
<td>Rp000</td>
</tr>
<tr>
<td><strong>Sub-DAS hulu</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penerimaan</td>
<td>4020,3</td>
<td>100,0</td>
<td>4112,2</td>
</tr>
<tr>
<td>Benih</td>
<td>60,4</td>
<td>1,5</td>
<td>63</td>
</tr>
<tr>
<td>Urea, ZA</td>
<td>384,6</td>
<td>9,6</td>
<td>320,4</td>
</tr>
<tr>
<td>TSP, SP-36</td>
<td>41,1</td>
<td>1</td>
<td>71,7</td>
</tr>
<tr>
<td>KCI</td>
<td>27,9</td>
<td>0,7</td>
<td>27,9</td>
</tr>
<tr>
<td>Pupuk lainnya</td>
<td>10,8</td>
<td>0,3</td>
<td>10,8</td>
</tr>
<tr>
<td>Insektisida, fungisida</td>
<td>41,2</td>
<td>1</td>
<td>21,5</td>
</tr>
<tr>
<td>Irgasi</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tenaga kerja luar keluarga</td>
<td>1448,3</td>
<td>36</td>
<td>1880,1</td>
</tr>
<tr>
<td>Biaya lain-lain</td>
<td>48,1</td>
<td>1,2</td>
<td>55</td>
</tr>
<tr>
<td>Total biaya</td>
<td>2062,5</td>
<td>51,3</td>
<td>2450,5</td>
</tr>
<tr>
<td>Keuntungan atas biaya tunai</td>
<td>1957,8</td>
<td>48,7</td>
<td>1661,8</td>
</tr>
<tr>
<td><strong>Sub-DAS tengah</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penerimaan</td>
<td>4181,9</td>
<td>100,0</td>
<td>4656,1</td>
</tr>
<tr>
<td>Benih</td>
<td>49,6</td>
<td>1,2</td>
<td>52,2</td>
</tr>
<tr>
<td>Urea, ZA</td>
<td>309</td>
<td>7,4</td>
<td>393,4</td>
</tr>
<tr>
<td>TSP, SP-36</td>
<td>136,6</td>
<td>3,3</td>
<td>105,9</td>
</tr>
<tr>
<td>KCI</td>
<td>-</td>
<td>-</td>
<td>29,3</td>
</tr>
<tr>
<td>Pupuk lainnya</td>
<td>185,3</td>
<td>4,4</td>
<td>88,5</td>
</tr>
<tr>
<td>Insektisida, fungisida</td>
<td>-</td>
<td>-</td>
<td>22</td>
</tr>
<tr>
<td>Irgasi</td>
<td>-</td>
<td>-</td>
<td>19,1</td>
</tr>
<tr>
<td>Tenaga kerja luar keluarga</td>
<td>1741,6</td>
<td>41,6</td>
<td>1612,4</td>
</tr>
<tr>
<td>Biaya lain-lain</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total biaya</td>
<td>2422,2</td>
<td>57,9</td>
<td>2322,8</td>
</tr>
<tr>
<td>Keuntungan atas biaya tunai</td>
<td>1759,7</td>
<td>42,1</td>
<td>2333,3</td>
</tr>
<tr>
<td><strong>Sub-DAS hilir</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penerimaan</td>
<td>3741,5</td>
<td>100,0</td>
<td>3632,6</td>
</tr>
<tr>
<td>Benih</td>
<td>42,7</td>
<td>1,1</td>
<td>60,4</td>
</tr>
<tr>
<td>Urea, ZA</td>
<td>291,6</td>
<td>7,8</td>
<td>404,7</td>
</tr>
<tr>
<td>TSP, SP-36</td>
<td>21,4</td>
<td>0,6</td>
<td>145</td>
</tr>
<tr>
<td>KCI</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pupuk lainnya</td>
<td>-</td>
<td>-</td>
<td>82,8</td>
</tr>
<tr>
<td>Insektisida, fungisida</td>
<td>-</td>
<td>-</td>
<td>63,7</td>
</tr>
<tr>
<td>Irgasi</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tenaga kerja luar keluarga</td>
<td>1102,8</td>
<td>29,5</td>
<td>1393,7</td>
</tr>
<tr>
<td>Biaya lain-lain</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total biaya</td>
<td>1458,5</td>
<td>39,0</td>
<td>2181,3</td>
</tr>
<tr>
<td>Keuntungan atas biaya tunai</td>
<td>2283,0</td>
<td>61,0</td>
<td>1451,3</td>
</tr>
</tbody>
</table>

Ekonomi Jagung Indonesia 123