KEONG MAS, DARI HEWAN PELIHARAAN MENJADI HAMA UTAMA PADI SAWAH

Hendarsih Suharto dan Nia Kurniawati
Balai Besar Penelitian Tanaman Padi

1. PENDAHULUAN

Sebagian dari keong mas yang lepas ke sawah berkembang biak dengan cepat. Habitat sawah sesuai bagi perkembangan keong mas dan populasinya meningkat dalam waktu yang relatif cepat, sehingga cepat pula merusak tanaman padi. Oleh karena itu, keong mas telah berubah status dari hewan peliharaan menjadi hama padi. Pada tingkat serangan yang berat, keong mas mampu merusak banyak rumpun tanaman padi, sehingga petani harus menyulam atau menanam ulang. Luas areal pertanaman padi yang dirusak keong mas pada tahun 2007 mencapai lebih dari 22.000 ha (Direktorat Perlindungan Tanaman Pangan, 2008).

Kini keong mas termasuk 100 spesies asing yang menginvasi kawasan baru yang paling cepat berkembang dan paling merugikan. Kerugian yang disebabkan oleh keong mas bukan hanya turunnya hasil panen padi, tetapi juga bertambahnya biaya pengendalian. Tambahan biaya untuk menanam ulang atau menyulam akan mengurangi keuntungan petani.

2. BIOLOGI DAN MORFOLOGI

Keong mas satu famili dengan keong lokal, yaitu keong gondang Pila ampullacea (Marwoto, 1997), famili Ampullariidae yang merupakan siput air tawar. Siput ini berbentuk bundar atau setengah bundar. Rumah siput berujung pada menara pendek dengan 4–5 putaran kanal yang dangkal. Pada mulut rumah siput terdapat penutup mulut yang disebut operculum yang kaku. Keluarga siput Ampullariidae berukuran besar, rumah siput bisa mencapai 100 mm.

Determinasi untuk menentukan spesies dari famili Ampullariidae berdasarkan pada mulut keong (aperture), bentuk rumah siput, umbilicus, kerutan dari menara rumah siput dan tutup mulut keong (operculum), ukuran rumah siput, dan kelenturan operculum (Anonim, 2006a).
Keong mas termasuk
Filum : Molluska
Kelas : Gastropoda
Ordo : Mesogastropoda,
Famili : Ampullariidae,
Genus : Pomacea

P. canaliculata Lamarck secara morfologi ditandai oleh karakteristik sebagai berikut: rumah siput bundar dan menara pendek; rumah siput besar, tebal, lima sampai enam putaran di dekat menara dengan kanal yang dalam, mulut besar dengan bentuk bulat sampai oval, operculum tebal rapat menutup mulut, berwarna cokelat sampai kuning muda, bergantung pada tempat berkembangnya, dagingnya lunak berwarna putih krem atau merah jambu keemasan atau kuning oranye. Genitalia jantan juga dapat digunakan dalam menentukan spesies keong mas secara lebih akurat. Operculum betina cekung dan tepi mulut rumah siput melengkung ke dalam, sebaliknya operculum jantan cembung dan tepi mulut rumah siput melengkung keluar.

3. **Siklus Hidup**

Keong mas dan juga famili Ampullariidae yang lain bersifat amfibi, karena mempunyai insang dan paru-paru. Paru-paru tertutup jika sedang tenggelam dan terbuka setelah keluar dari air. Keong mas juga mempunyai sifon pernafasan untuk bergerak sambil mengambang. Semua kelebihan tersebut berguna untuk
mekanisme survival. Pada musim kemarau keong berdiapause pada lapisan tanah yang masih lembab, dan muncul kembali jika lahan digenangi air. Jika hidup pada tanah kering, keong mas akan ganti bernafas dari pernafasan aerobik menjadi pernafasan sebagian anaerobik. Indra yang paling aktif adalah penciuman, yang bisa mendeteksi makanan dan lawan jenis.

Pada temperatur 23–32\(^\circ\) C, dalam sebulan seekor keong mas dapat bertelur 15 kelompok yang terdiri atas 300 sampai 1.000 butir tiap kelompok (Hatimah dan Ismail, 1989). Ukuran keong yang baru menetas 2,2–3,5 mm dan menjadi dewasa dalam 60 hari atau lebih, bergantung pada lingkungan. Mortalitas keong sangat rendah, dalam stadia juvenile selama 30 hari survival dari juvenile yang berdiameter 0,5 cm antara 95 sampai 100\% (Kurniawati dkk., 2007).

4. **Habitat, Penyebaran, dan Daya Rusak**

4.1 Habitat

Keong mas hidup pada kolam, rawa, dan lahan yang selalu tergenang termasuk sawah, di daerah tropik dan subtropik dengan temperatur terendah 10\(^\circ\)C (Anonim, 2006b). Hewan ini mempunyai insang dan organ yang berfungsi sebagai paru-paru yang digunakan untuk adaptasi di dalam air maupun di darat. Paru-paru merupakan organ tubuh yang penting untuk hidup pada kondisi yang berat. Gabungan antara operculum dengan paru-paru merupakan daya adaptasi untuk menghadapi kekeringan. Jika air berkurang dan tanah atau lumpur menjadi kering, keong mas membenamkan diri ke dalam tanah, sehingga metabolisme berkurang dan memasuki masa diapause. Fungsi paru-paru bukan hanya untuk bernafas tetapi juga untuk mengatur pengapungan. Keong mas dapat hidup pada lingkungan yang berat, seperti air yang terpolusi atau kurang kandungan oksigen.

388
4.2 Penyebaran

Introduksi keong mas dari habitat aslinya di Amerika Selatan ke beberapa negara untuk berbagai keperluan menyebar dengan cepat. Habitat yang kondusif bagi keong mas di daerah yang baru menyebabkan populasi meningkat dan telah menjadi hama baru pada tanaman padi. Keong mas salah satu dari 100 spesies biota di tempat hidup yang baru dan paling merugikan (Joshi, 2005). Invasi keong mas berkaitan dengan daya reproduksi yang tinggi, kemampuan beradaptasi yang cepat dengan lingkungan, dan raksas makan pada kondisi tanaman inang yang beragam, sehingga dapat mengalihkan perkembangan siput atau keong lokal.

<table>
<thead>
<tr>
<th>Tahun</th>
<th>Luas serangan keong mas (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Terkena</td>
</tr>
<tr>
<td>2003</td>
<td>13.227</td>
</tr>
<tr>
<td>2004</td>
<td>16.737</td>
</tr>
<tr>
<td>2005</td>
<td>14.711</td>
</tr>
<tr>
<td>2006</td>
<td>15.840</td>
</tr>
<tr>
<td>2007</td>
<td>22.110</td>
</tr>
<tr>
<td>Rata-rata 1997-2006</td>
<td>11.361</td>
</tr>
</tbody>
</table>

Penyebaran invasi keong mas tidak merata antarlokasi, serangan yang selalu luas (lebih dari 500 ha) terjadi di Nangroe Aceh Darussalam, Sumatera Utara, Lampung, Jawa Barat, Jawa Tengah, Sulawesi Selatan, dan Sulawesi Tenggara, sedangkan di Kalimantan Tengah dan Maluku tidak ada laporan (Direktorat Perlindungan Tanaman Pangan, 2008).

4.3 Daya Rusak

Mulut keong mas berada di antara tentakel bibir dan memiliki radula, yaitu lidah yang dilengkapi dengan beberapa baris duri yang tiap baris terdiri atas tujuh duri. Radula memerut jaringan tanaman pada perbatasan permukaan air, sehingga tanaman patah dan kemudian dimakan. Keong mas merupakan hewan nocturnal yang sangat rakus, terutama pada malam hari dan makan hampir semua tumbuhan dalam air yang masih lunak. Keong mas makan berbagai tumbuhan seperti ganggang, azola, eceng gondok, padi, dan tumbuhan sukulen lainnya. Jika makanan dalam air tidak ada atau tidak cukup, keong mas naik ke daratan untuk mencari makanan. Keong mas yang masih kecil makan bahan organik yang terlarut atau remah-remah dari tumbuhan, daging, dan bangkai hewan lainnya.

Keong mas dapat makan bahan organik yang terapung di permukaan air, selain memakan bahan yang ada di permukaan. Untuk makanan bahan yang terapung, keong mas menggulung kaki depan hingga berbentuk corong dan bagian tengah berbentuk tabung. Pedalcilia menarik makanan dari permukaan ke dalam corong sampai ke tabung dan terjerat lendir di pangkal tabung. Makanan yang terkumpul kemudian masuk ke tembolok sambil mendorong kepalanya. Bahan yang terapung di permukaan air kaya protein. Walaupun herbavorous, dalam keadaan terdesak, keong mas memakan bangkai atau bahkan kanibal sebagai cara untuk bertahan hidup.

Tanaman padi rentan terhadap serangan keong mas sampai 15 hari setelah tanam untuk padi tanam pindah dan 30 hari setelah tebar untuk padi sebar langsung. Tingkat kerusakan tanaman padi sangat bergantung pada populasi, ukuran keong, dan umur tanaman. Tiga ekor keong mas per m² tanaman padi sudah mengurangi hasil secara nyata. Pada padi varieties Ciharang yang berumur 15 hari setelah tebar, keberadaan keong mas dengan tutup cangkang berdiameter 0,5 cm selama 13 hari hampir tidak menimbulkan kerusakan pada tanaman. Keong mas dengan diameter 1,0 cm menyebabkan sedikit kerusakan, sedangkan yang berdiameter 1,5; 2,0; dan 2,5 cm sudah menyebabkan kerusakan berat pada tanaman sejak hari pertama dan pada hari ketiga kerusakan tanaman sudah mencapai lebih dari 97% (Hendarsih dan Kurniawati, 2005). Keong mas berukuran panjang 4 cm lebih ganas, dapat merusak tanaman padi yang ditanam pindah maupun tebar langsung (Joshi, 2002).
5. PENGENDALIAN

5.1 Pencegahan Penyebaran

Keong mas menyebar melalui air. Mencegah penyebaran merupakan usaha yang lebih baik. Jika suatu daerah sudah terinvasi, keong mas akan sulit dikendalikan. Pencegahan penyebaran sebaiknya pada daerah yang belum ada populasi keong mas.

5.2 Pengendalian di Daerah yang Sudah Terserang

Untuk menekan populasi dan mengurangi kerusakan tanaman oleh keong mas dapat dilakukan pengendalian secara terpadu. Pengendalian keong mas pada tanaman budi daya perlu dilakukan sejak persiapan tanam hingga setelah panen.

5.3 Pengendalian Secara Mekanis

Pengolahan tanah dengan cara dibajak, kemudian diikuti oleh pelumpuran, dapat mengurangi populasi keong mas. Hasil penelitian menunjukkan pengolahan tanah mengurangi populasi 77,9% untuk keong mas dengan tinggi cangkang lebih dari 20 mm, dan 67,6–68,3% untuk keong mas dengan tinggi cangkang
11,7–19,0 mm (Wada, 2003). Perbaikan saluran irigasi perlu diikuti oleh sanitasi gulma seperti kangkung. Memasang saringan pada saluran masuk dan keluar air diperlukan untuk mencegah keong masuk ke petak sawah. Namun cara ini kurang efektif karena keong mampu merayap melewati saringan atau galengan (Joshi, 2005).

5.4 Tanaman Atraktan

Beberapa jenis tanaman dapat bersifat atraktan seperti daun pepaya, kulit nangka, kulit mangga, daun talas, dan daun singkong. Keong akan berkumpul pada bahan atraktan yang diletakkan di petak sawah sehingga mudah dipungut. Peletakan bahan atraktan pada petak sawah sebaiknya sore hari.

5.5 Pengendalian Secara Kultur Teknik

Pengendalian secara kultur teknik sama baiknya dengan cara mekanis, karena tidak mencegah lingkungan. Dalam hal ini, cara yang dapat dilakukan antara lain adalah dengan menanam bibit yang lebih tua. Bibit padi yang berumur lebih dari 28 hari kurang disukai oleh keong. Oleh karena itu, serangan keong mas pada pertanaman padi yang ditanam secara sebar langsung lebih berat daripada tanam pindah.

Memberikan pupuk dasar sebelum tanam dapat mengurangi tingkat serangan keong mas. Kulit keong yang terkena pupuk menyebabkan iritasi dan mati karena mengeluhkan banyak lendir. Keong yang mati akibat pupuk ditandai oleh terbukanya operculum, sedangkan keong yang mati akibat pestisida ditandai oleh tertutupnya operculum (Cruz et al., 2001). Kalaupun keong tidak mati, kerakusannya menunur setelah terkena pupuk.

Keong mas akan aktif dan lebih rakus makan jika ketinggian air di sawah sama dengan tinggi rumah siput. Oleh karena itu, ketinggian air perlu diatur sedemikian rupa agar tidak terlalu tinggi atau sawah tidak diairi selama 7–10 hari setelah tanam.

Pengapuran (CaO) dapat menyebabkan keong mas kurang aktif dan bahkan mati. Pengapuran dengan takaran 50 kg/ha efektif menekan perkembangan keong mas (Hendarssih dan Kurniawati, 2002). Pengapuran dianjurkan pada saat populasi keong mas rendah atau pada saat tanam. Selain menurunkan daya makan keong mas, penggunaan kapur pertanian atau CaO juga penting artinya untuk meningkatkan pH tanah, terutama pada tanah masam.
Rotasi tanaman padi dengan kedelai, terutama untuk tanaman padi sebar langsung, dapat menekan populasi keong mas, dibandingkan dengan tanpa rotasi (Wada, 2003). Di Jepang, rotasi tanaman padi dengan kedelai dilakukan dalam jangka waktu satu tahun. Dalam hal ini padi ditanam pada tahun kedua. Walaupun di Indonesia belum ada data penelitian tentang pengaruh rotasi tanaman terhadap serangan keong mas, secara teori cara tersebut dapat diterapkan untuk mengurangi populasi awal.

5.6 Pengendalian Secara Biologi

Penelitian skala laboratorium di Jepang menunjukkan bahwa predator keong mas yang potensial adalah beberapa spesies kepiting, penyu, dan tikus (Yusa, 2007). Musuh alami keong mas adalah semut merah *Solenopsis geminata* dan belalang *Conocephalus longipennis* yang memakan telur keong. Tikus sawah juga dapat memakan daging atau memangsa keong mas secara utuh.

5.6.1 Minapadi

Beberapa jenis ikan dilaporkan dapat memakan keong mas. Ikan mas (*Cyprinus carpio*) dengan bobot 150 g dapat memakan 40 keong kecil. Ikan nila (*Oreochromis niloticus*), tawes (*Puntius gonionotus*), dan mujair (*Oreochromis mossambicus*) juga memangsa keong mas tapi tidak serakus ikan mas. Bergantung pada bobotnya, ikan mas dapat mengonsumsi keong mas hingga dengan tinggi rumah keong 20 mm, sedangkan ikan nila hanya mampu mengonsumsi keong mas dengan tinggi rumah keong hingga 8 mm (Yusa, 2007). Minapadi sudah berkembang di beberapa daerah. Di daerah dengan sarana irigasi yang mendukung, minapadi dapat dianjurkan untuk mengendalikan keong mas.

5.6.2 Penggembalaan Bebek

Bebek juga merupakan predator keong mas sebagai pakannya, terutama untuk memenuhi kebutuhan protein dan kalsium. Pada agroekosistem sawah, bebek biasanya mencari hewan di dalam air sebagai pakan, termasuk keong mas. Menggembalaan 200 ekor bebek/ha lahan sawah dua hari sebelum tanam selama 8 jam/hari dapat mengurangi populasi keong mas sampai 89,2% dan mengurangi kerusakan rumpun padi hingga 47% (Pantua *et al.*, 1992).

5.7 Pengendalian Secara Kimiawi

Di Indonesia pengendalian keong mas dengan pestisida belum populer. Di pantai utara Jawa Barat petani mengaplikasikan bahan nabati Saponin jika
serangan tetap tinggi walaupun keong sudah dipungut. Di Filipina pengendalian keong mas sangat bergantung pada pestisida.

5.7.1 Pestisida Sintetik

5.7.2 Pestisida Nabati

berperan sebagai moluskisida namun toksik terhadap ikan mas (Kertoseputro dkk., 2007b).

Efektivitas pestisida nabati bergantung pada ukuran keong mas. Penggunaan rerak dan saponin menyebabkan lebih banyak keong kecil (diameter 1,0 cm) yang mati lebih awal dibandingkan dengan keong yang lebih besar. Insektisida dan bahan nabati tidak bersifat ovisidal dan tidak berpengaruh terhadap daya tetas telur keong mas. Namun aplikasi insektisida kartap, bahan nabati biji teh, dan rerak pada telur berumur 4 dan 7 hari mengurangi daya hidup keong muda (juvenil) yang menetas dari telur yang diaplikasi dengan bahan tersebut (Kurniawati dkk., 2007).

Pengujian empat bahan nabati dan lima insektisida pada 5 dan 10 hari setelah aplikasi pestisida tidak berpengaruh nyata terhadap populasi keong, kecuali aplikasi saponin. Kerusakan tanaman yang disebabkan oleh keong mas pada 5 hari setelah tanam pada perlakuan rerak dan kartap nyata lebih rendah dibandingkan dengan kontrol. Pada 10 hari setelah aplikasi, kerusakan tanaman meningkat pada semua perlakuan. Aplikasi saponin menyebabkan tingkat kerusakan tanaman juga nyata lebih rendah dari kontrol (Tabel 2).
Tabel 2. Pengaruh Aplikasi Pesticida Nabati dan Insektisida Kimia terhadap Populasi Keong
Sukamandi, MH 2006 (Kertoseputro dkk., 2007a)

<table>
<thead>
<tr>
<th>Pesticida/ insektisida</th>
<th>Konsentrasi</th>
<th>Rerata</th>
<th>Populasi keong/m²</th>
<th>Tingkat kerusakan tanaman (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5 HST</td>
<td>10 HST</td>
<td>5 HST</td>
</tr>
<tr>
<td>Saponin</td>
<td>0.5 g/m²</td>
<td>0.33 **</td>
<td>0.33 **</td>
<td>0.47 **</td>
</tr>
<tr>
<td>Rerak</td>
<td>0.5 g/ m²</td>
<td>2.67 ns</td>
<td>2.33 ns</td>
<td>3.09 *</td>
</tr>
<tr>
<td>Biji teh</td>
<td>0.1 g/ m²</td>
<td>1.67 ns</td>
<td>3.67 ns</td>
<td>13.27 ns</td>
</tr>
<tr>
<td>Limbah teh</td>
<td>25 g/ m²</td>
<td>5.00 ns</td>
<td>3.00 ns</td>
<td>32.41 ns</td>
</tr>
<tr>
<td>Dimelhpo</td>
<td>1.2 g ba/l</td>
<td>4.33 ns</td>
<td>5.00 ns</td>
<td>9.26 ns</td>
</tr>
<tr>
<td>Fipronil</td>
<td>0.05 g ba/l</td>
<td>4.33 ns</td>
<td>4.00 ns</td>
<td>35.49 ns</td>
</tr>
<tr>
<td>Kartap</td>
<td>0.25 g ba/l</td>
<td>5.00 ns</td>
<td>3.00 ns</td>
<td>3.55 *</td>
</tr>
<tr>
<td>Bensulfat</td>
<td>0.1 g ba/l</td>
<td>5.00 ns</td>
<td>4.67 ns</td>
<td>13.74 ns</td>
</tr>
<tr>
<td>Karbosulfan</td>
<td>0.4 g ba/l</td>
<td>4.00 ns</td>
<td>6.33 ns</td>
<td>31.94 ns</td>
</tr>
<tr>
<td>Kontrol</td>
<td></td>
<td>5.33</td>
<td>4.67</td>
<td>27.00</td>
</tr>
</tbody>
</table>

ba = bahan aktif
* angka dalam satu kolom berbeda nyata dengan kontrol
** angka dalam satu kolom sangat berbeda nyata dengan kontrol
HST = hari setelah tanam.

5.7.3 Pengaruh Aplikasi Pesticida terhadap Ikan Mas

Penelitian di Sukamandi pada MH 2006 menunjukkan aplikasi limbah teh sebagai pesticida membunuh banyak ikan mas, tetapi relatif tidak mempengaruhi siput sawah. Aplikasi kartap tidak membunuh ikan mas maupun siput sawah. Kematian ikan mas pada perlakuan pesticida lainnya kurang dari 10%. Siput sawah yang diinfestasikan bersamaan dengan aplikasi insektisida setelah 72 jam infestasi ikan mas pada pertanaman padi relatif tidak dipengaruhi oleh pesticida dari biji teh, fipronil, dan karbosulfan (Tabel 3).

Aplikasi molusksida sebelum tanam atau bersamaan dengan waktu tanam lebih efektif dibandingkan dengan aplikasi pada dua hari setelah tanam, karena keong telah menimbulkan kerusakan sebelum aplikasi. Aplikasi pesticida di atas curen akan mengurangi jumlah pesticida karena keong berkumpul dalam curen. Kebutuhan pesticida dapat dihitung berdasarkan volume air dalam curen (Hendarsih dan Kurniawati, 2002).

<table>
<thead>
<tr>
<th>Pesticida/</th>
<th>Konsentrasi</th>
<th>Tingkat kematian (%) pada 72 JSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>insektisida</td>
<td></td>
<td>Siput sawah</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ikan mas</td>
</tr>
<tr>
<td>Saponin</td>
<td>0,5 g/m²</td>
<td>0,0 ns</td>
</tr>
<tr>
<td>Rerak</td>
<td>0,5 g/m²</td>
<td>0,0 ns</td>
</tr>
<tr>
<td>Biji teh</td>
<td>0,1 g/m²</td>
<td>0,0 ns</td>
</tr>
<tr>
<td>Limbah teh</td>
<td>25 g/m²</td>
<td>1,68 ns</td>
</tr>
<tr>
<td>Dimethipho</td>
<td>1,2 g ba/l</td>
<td>0,0 ns</td>
</tr>
<tr>
<td>Fipronil</td>
<td>0,05 g ba/l</td>
<td>1,68 ns</td>
</tr>
<tr>
<td>Kartap</td>
<td>0,25 g ba/l</td>
<td>0,0 ns</td>
</tr>
<tr>
<td>Bensulfat</td>
<td>0,1 g ba/l</td>
<td>0,0 ns</td>
</tr>
<tr>
<td>Karbosulfan</td>
<td>0,4 g ba/l</td>
<td>1,68 ns</td>
</tr>
<tr>
<td>Kontrol</td>
<td>-</td>
<td>0,00</td>
</tr>
</tbody>
</table>

ba = bahan aktif.
** angka dalam satu kolom sangat berbeda nyata dengan kontrol
JSA = jam setelah aplikasi insektisida.

6. Pemanfaatan Keong Mas

6.1 Bahan Pangan

Keong mas mengandung gizi yang tinggi. Selain kalori, protein, dan karbohidrat, keong mas juga mengandung vitamin dan mineral (Tabel 4). Hal ini merupakan salah satu alasan pemeliharaan keong mas di Asia pada awal introduksi.
Tabel 4. Kandungan Gizi Keong Mas (Anonim, 2002a)

<table>
<thead>
<tr>
<th>Unsir gizi</th>
<th>Kandungan gizi/100 g daging keong mas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energi</td>
<td>83 kalori</td>
</tr>
<tr>
<td>Protein</td>
<td>12,2 g</td>
</tr>
<tr>
<td>Lemak</td>
<td>0,4 g</td>
</tr>
<tr>
<td>Karbohidrat</td>
<td>6,6 g</td>
</tr>
<tr>
<td>Abu</td>
<td>3,2 g</td>
</tr>
<tr>
<td>Fosfor</td>
<td>61 mg</td>
</tr>
<tr>
<td>Natrium</td>
<td>40 mg</td>
</tr>
<tr>
<td>Kaliun</td>
<td>17 mg</td>
</tr>
<tr>
<td>Riboflavin</td>
<td>12 mg</td>
</tr>
<tr>
<td>Niacin</td>
<td>1,8 mg</td>
</tr>
<tr>
<td>Kandungan unsur lainnya</td>
<td>Vitamin C, Zn, Cu, Mn, dan yodium</td>
</tr>
</tbody>
</table>

Berbagai resep dari beberapa negara untuk memasak keong mas telah dikompilasi oleh Joshi (2006). Keong mas selain makan tumbuhan, juga makan bahan yang telah busuk yang dapat meracuni manusia jika mengonsumsi keong mas. Oleh karena itu, sama dengan keong lokal atau keong gondang dan keong sawah (kracak, *Bellamya javanica*), sebelum dimasak keong mas perlu dibebaskan dari makanan yang masih ada dalam pencernaan. Langkah pertama sebelum dimasak adalah membersihkan perceraaan keong dengan cara merendam dan membersihkan dalam air selama 1-2 malam. Setelah itu keong mas siap dimasak, dan harus benar-benar matang untuk membunuh parasit yang mungkin masih hidup pada tubuh keong.

Keong mas merupakan salah satu inang beberapa parasit, di antaranya *Angiostrongylus cantonensis*, yang mengganggu saraf manusia dan menimbulkan gejala pusing, muka kaku, dan meningitis (Holingsworth dan Cowie, 2006). Namun, jika di lingkungan keong mas tidak banyak tikus, parasit tersebut tidak perlu ditakutkan.

6.2 Pakan

Penggunaan lain dari keong mas adalah sebagai pakan ikan lele, itik, dan ayam. Sampai saat ini belum ada laporan tentang pembiakan keong mas untuk pakan. Menganalisis gizi yang tinggi, daging keong mas dapat menggantikan tepung ikan dalam pakan temak. Rumah siput mengandung 98,6% bahan kering, 35,1% kalium, 4,3% protein kasar, dan sejumlah kecil nitrogen dan fosfor.
(Catalma et al., 1991), sehingga dapat mengantikan kapur yang biasa digunakan untuk pakan ternak.

6.3 Bahan Kerajinan

Di beberapa daerah, antara lain di Banyuasin, Sumatera Selatan, populasi keong mas cukup tinggi dalam berbagai ukuran. Penduduk setempat memanfaatkan rumah keong tersebut sebagai bahan kerajinan tangan (Sudarmaji dalam Hendarsih et al., 2006).

6.4 Pupuk

Keong mas juga dapat digunakan sebagai pupuk. Selain dagingnya, mengandung unsur fosfor dan kalium, rumah keong mas juga mengandung kalsium. Penelitian di Filipina menunjukkan bahwa penggunaan tepung keong mas sebanyak 0.75 kg/ha sebagai pupuk pada tanah liat berlempung meningkatkan hasil padi varietas IR74 sebesar 50% (Aquino, 1993).

6.5 Penyiangan Tanaman Padi Sawah

Di Korea, pengendalian gulma pada pertanaman padi organik menggunakan keong mas. Oleh karena itu, keong mas ditermakan, kemudian dilepaskan di sawah setelah padi ditanam. Pelepasan keong mas 7 hari setelah tanam paling efektif mengendalikan gulma (Lee dan Oh, 2006). Dalam pelaksanaannya, sebanyak 5 kg keong ukuran 5–8 g (600–1000 ekor) dimasukkan ke dalam 1.000 m² areal pertanaman padi sawah dan ketinggian muka air diatur sedemikian rupa. Muka air yang terlalu tinggi menyebabkan keong juga akan makan tanaman padi, dan jika muka air terlalu rendah keong sukar bergerak.

Di Korea, teknologi tersebut bisa diaplikasikan karena adanya musim dingin, sehingga siklus hidup keong mas jarang yang mencapai satu tahun. Percobaan di PhilRice, Filipina, menunjukkan bahwa penyiangan gulma dengan
keong mas hanya dapat dilakukan dalam sistem tanam pindah pada saat tanaman padi sudah memiliki daun tiga helai (21 HST), dengan permukaan lahan sawah yang rata. Beberapa hari setelah tanam sawah tidak ditanam. Pada saat rumput mulai berekambang, air dimasukkan sehingga keong yang semula berada di dalam lumpur mulai keluar memakan rumput (Joshi et al., 2006). Di Indonesia, pemanfaatan keong mas sebagai pengendali gulma tidak dianjurkan karena biaya penyiangan secara manual maupun menggunakan herbisida relatif murah dibandingkan dengan mengendalikan keong mas itu sendiri pada populasi yang tinggi.

DAFTAR PUSTAKA

